Dosage Colorimétrique des Polluants Chimiques

HIDRI A., ingénieur - ISST

Les services techniques de l'ISST vous offrent l'opportunité de réaliser des études d'ambiance de travail à des fins d'amélioration des conditions de travail, grâce à des compétences et du matériel répondant aux normes internationales les plus récentes.

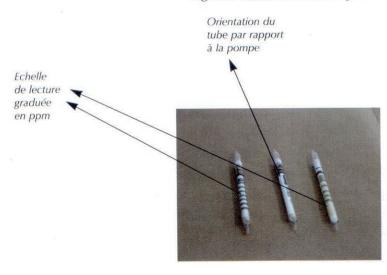
Une série d'articles éclaireront nos lecteurs sur les spécificités du matériel disponible à l'ISST, permettant l'évaluation des polluants gazeux.

Il existe deux types d'instruments de mesure des gaz et des vapeurs :

- Instrument à lecture directe le plus souvent électronique : l'affichage du résultat est instantané ou colorimétrique,
- Instrument de prélèvement à lecture indirecte : une pompe munie d'une tête de prélèvement (cassette plus dispositif de piégeage) assure le prélèvement d'un échantillon de polluant sur le lieu de travail, qui est ensuite analysé en laboratoire.

Ce premier article va traiter uniquement la méthode colorimétrique d'évaluation des polluants chimiques.

La méthode colorimétrique est une méthode à lecture directe qui permet une évaluation semi-quantitative des polluants gazeux. Elle est parmi les plus simples, les plus rapides et les moins coûteuses.


Le principe de fonctionnement des tubes colorimétriques consiste en une réaction colorée entre un contaminant ou une famille de contaminants (phase gazeuse) et un réactif. La concentration est fonction de l'importance de la réaction de l'adsorbant imprégné avec le contaminant de l'atmosphère de travail. L'intensité de la coloration se développe proportionnellement à la concentration du contaminant. Il importe donc, après avoir brisé les extrémités du tube et l'avoir relié à la pompe manuelle, de respecter la période de temps nécessaire au passage du volume normalisé d'air (100 ml ou 150 ml par coup de pompe) au développement de la réaction.

Après aspiration de l'air pollué par la pompe, l'air aspiré réagit avec le réactif contenu dans le tube colorimétrique en virant de couleur. Une échelle graduée en parties par million (ppm) permet la lecture de la concentration du polluant dans l'air.

Matériel disponible à l'ISST

- Pompes type MSA,
- Pompes à souflet type DRAGER,
- Tubes colorimétriques pour différents gaz.

Figure: Tubes colorimétriques

Liste des tubes colorimétriques disponibles à l'ISST :

lom du contaminant	Formule chimique
Benzène	C6H6
Styrène	C8H8
Ammoniac	NH3
Acide fluorhydrique	HF
Trichloréthylène	C2CL3H
Dioxyde de carbone	CO2
Hexafluorure de souffre	SF6
Hydrogène phosphoré	PH3
Bromure de méthyle	CH3BR
Dioxyde de souffre	SO2
Vapeurs nitreuses	
Sulfure de carbone	CS2
Chlorure de vinyle	squoleveb es (objes
Phosgène	COCL2
Dioxyde de souffre	SO2
Hydrogène sulfuré	H2S
Phénol	C6H6O
Acide cyanhydrique	HCN
Chlore	CL2
Hexane	C6H14
Monoxyde de carbone	CO
Toluène	C7H8
Gaz naturels	acamatic
Dioxyde de chlore	ClO2
Acétone	C3H6O
Alcohol	-
Trichloréthane	C2H3CL3
Perchloréthylène	C2CL4
Acide chromique	HCR
Dichlorométhane	CH2CL2
Acide acétique	C2H4O2
Propane	C3H8
Acétylène	C2H2

QUESTION:

- Nous sommes une société spécialisée dans l'entretien de pièces diverses métalliques (décapage au jet d'abrasifs), pouvez-vous nous informer sur les précautions à prendre concernant l'installation d'un compresseur assurant une alimentation en air respirable.

REPONSE:

Pour garantir une bonne qualité d'air respirable, les consignes suivantes doivent être respectées :

- assurer une alimentation par un réseau d'air comprimé à 3-7 bars,
- assurer une teneur suffisante en oxygène (> à 17 %).

Les équipements suivants doivent être également installés :

- Un dispositif de purification d'air contenant un filtre déshuileur et un filtre pour la rétention de la vapeur d'eau.
- Un dispositif de sécurité (protecteurs, grillages ...) pour les éléments mobiles du compresseur.
- Une tuyauterie flexible, de longueur variable et d'étanchéité efficace assurant un acheminement adéquat de l'air respirable.

Toutefois, nous conseillons l'utilisation d'un compresseur destiné à alimenter l'utilisateur en air de qualité respirable.

Essaï M. tech. sup.

ERRATUM

Nos sincères excuses à Mrs Fayçal Lassoued, Directeur de la flotte OMMP et Malek Ben Amor, ingénieur principal DGM- OMMP; co-auteurs de l'article «les visites techniques des navires» et dont les noms ont été malencontreusement omis.